Conheço o LearningRateScheduler do curso Coursera, mas copiá-lo da mesma forma resultará em um desempenho ruim do modelo. Talvez devido ao intervalo que configurei. As instruções do site Keras são limitadas.
def duo_LSTM_model(X_train, y_train, X_test,y_test,num_classes,batch_size=68,units=128, learning_rate=0.005, epochs=20, dropout=0.2, recurrent_dropout=0.2 ):
model = tf.keras.models.Sequential()
model.add(tf.keras.layers.Masking(mask_value=0.0, input_shape=(X_train.shape[1], X_train.shape[2])))
model.add(tf.keras.layers.Bidirectional(LSTM(units, dropout=dropout, recurrent_dropout=recurrent_dropout,return_sequences=True)))
model.add(tf.keras.layers.Bidirectional(LSTM(units, dropout=dropout, recurrent_dropout=recurrent_dropout)))
model.add(Dense(num_classes, activation='softmax'))
adamopt = tf.keras.optimizers.Adam(lr=learning_rate, beta_1=0.9, beta_2=0.999, epsilon=1e-8)
RMSopt = tf.keras.optimizers.RMSprop(lr=learning_rate, rho=0.9, epsilon=1e-6)
SGDopt = tf.keras.optimizers.SGD(lr=learning_rate, momentum=0.9, decay=0.1, nesterov=False)
lr_schedule = tf.keras.callbacks.LearningRateScheduler(
lambda epoch: 1e-8 * 10**(epoch / 20))
model.compile(loss='binary_crossentropy',
optimizer=adamopt,
metrics=['accuracy'])
history = model.fit(X_train, y_train,
batch_size=batch_size,
epochs=epochs,
validation_data=(X_test, y_test),
verbose=1,
callbacks=[lr_schedule])
score, acc = model.evaluate(X_test, y_test,
batch_size=batch_size)
yhat = model.predict(X_test)
return history, that
Eu tenho duas perguntas.
Como 1e-8 * 10**(epoch / 20)
isso funciona?
Como devemos escolher o intervalo para os 3 otimizadores diferentes?
Antes de responder às duas perguntas em sua postagem, vamos primeiro esclarecer que LearningRateScheduler
não se trata de escolher a 'melhor' taxa de aprendizado.
Acho que o que você realmente quer perguntar é "como determinar a melhor taxa de aprendizado inicial ". Se eu estiver correto, você precisa aprender sobre o ajuste de hiperparâmetros.
Resposta à Q1:
Para responder como 1e-8 * 10**(epoch / 20)
funciona, vamos criar uma tarefa de regressão simples
import tensorflow as tf
import tensorflow.keras.backend as K
from sklearn.model_selection import train_test_split
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Input,Dense
x = np.linspace(0,100,1000)
y = np.sin(x) + x**2
x_train,x_val,y_train,y_val = train_test_split(x,y,test_size=0.3)
input_x = Input(shape=(1,))
y = Dense(10,activation='relu')(input_x)
y = Dense(1,activation='relu')(y)
model = Model(inputs=input_x,outputs=y)
adamopt = tf.keras.optimizers.Adam(lr=0.01, beta_1=0.9, beta_2=0.999, epsilon=1e-8)
def schedule_func(epoch):
print()
print('calling lr_scheduler on epoch %i' % epoch)
print('current learning rate %.8f' % K.eval(model.optimizer.lr))
print('returned value %.8f' % (1e-8 * 10**(epoch / 20)))
return 1e-8 * 10**(epoch / 20)
lr_schedule = tf.keras.callbacks.LearningRateScheduler(schedule_func)
model.compile(loss='mse',optimizer=adamopt,metrics=['mae'])
history = model.fit(x_train,y_train,
batch_size=8,
epochs=10,
validation_data=(x_val, y_val),
verbose=1,
callbacks=[lr_schedule])
No script acima, em vez de usar uma lambda
função, escrevi uma função schedule_func
. Executando o script, você verá que 1e-8 * 10**(epoch / 20)
basta definir a taxa de aprendizado para cada um epoch
, e a taxa de aprendizado está aumentando.
Resposta à Q2:
Há um monte de postagens legais, por exemplo
Este artigo é coletado da Internet.
Se houver alguma infração, entre em [email protected] Delete.
deixe-me dizer algumas palavras