pytorch中的类型不匹配

Dheeraj

我正在尝试使用PyTorch。我收到此错误:

RuntimeError: Expected object of scalar type Double but got scalar type Float for argument #2 'weight' in call to _thnn_conv2d_forward

这是我的代码(从在线教程中无耻复制):

class Net(Module):
    def __init__(self):
        super(Net,self).__init__()

        self.cnn_layers = Sequential(
            Conv2d(1,4,kernel_size=3,stride=1,padding=1),
            BatchNorm2d(4),
            ReLU(inplace=True),
            MaxPool2d(kernel_size=2,stride=2),

            Conv2d(4,4,kernel_size=3,stride=1,padding=1),
            BatchNorm2d(4),
            ReLU(inplace=True),
            MaxPool2d(kernel_size=2,stride=2)
        )
        self.linear_layers = Sequential(
            Linear(900,10)
        )

    def forward(self,x):
#         self.weights = self.weights.double()
        x = self.cnn_layers(x)
        x = x.view(x.size(0),-1)
        x = self.linear_layers(x)
        return x

tdata = dt.Data("train")
train_x = torch.from_numpy(tdata.get_train()[0].reshape(925,1,300,300))
train_y = torch.from_numpy(tdata.get_train()[1].astype(int))
val_x = torch.from_numpy(tdata.get_test()[0].reshape(102,1,300,300))
val_y = torch.from_numpy(tdata.get_test()[1].astype(int))
print(val_y.shape)
plt.imshow(tdata.get_train()[0][100],cmap='gray')
plt.show()

model = Net()
# defining the optimizer
optimizer = Adam(model.parameters(), lr=0.07)
# defining the loss function
criterion = CrossEntropyLoss()
# checking if GPU is available
if torch.cuda.is_available():
    model = model.cuda()
    criterion = criterion.cuda()

print(model)

def train(epoch):
    model.train()
    tr_loss = 0
    # getting the training set
    x_train, y_train = Variable(train_x.double()), Variable(train_y.double())
    # getting the validation set
    x_val, y_val = Variable(val_x), Variable(val_y)
    # converting the data into GPU format
    if torch.cuda.is_available():
        x_train = x_train.cuda()
        y_train = y_train.cuda()
        x_val = x_val.cuda()
        y_val = y_val.cuda()

    # clearing the Gradients of the model parameters
    optimizer.zero_grad()

    # prediction for training and validation set
    output_train = model(x_train.double())
    output_val = model(x_val)

    # computing the training and validation loss
    loss_train = criterion(output_train, y_train)
    loss_val = criterion(output_val, y_val)
    train_losses.append(loss_train)
    val_losses.append(loss_val)

    # computing the updated weights of all the model parameters
    loss_train.backward()
    optimizer.step()
    tr_loss = loss_train.item()
    if epoch%2 == 0:
        # printing the validation loss
        print('Epoch : ',epoch+1, '\t', 'loss :', loss_val)

n_epochs = 25
# empty list to store training losses
train_losses = []
# empty list to store validation losses
val_losses = []
# training the model
for epoch in range(n_epochs):
    train(epoch)

tdata.get_train()和tdata.get_test()返回一个元组(numpy(dtype ='double'),numpy(dtype ='int'))我认为权重是一个内部数据结构。因此,其类型应由PyTorch自行调整。这里有什么问题?

泰德

你可能只是添加.to(torch.float32)到您train_xval_x张量

本文收集自互联网,转载请注明来源。

如有侵权,请联系 [email protected] 删除。

编辑于
0

我来说两句

0 条评论
登录 后参与评论

相关文章