# 使用Heron公式计算C中的平方根

``````double heron(double a)
{
double x = (a + 1) / 2;
while (x * x - a > 0.000001) {
x = 0.5 * (x + a / x);
}
return x;
}
``````

``````double heron(double a)
{
double x = (a + 1) / 2;
while (x * x != a) {
x = 0.5 * (x + a / x);
}
return x;
}
``````

``````double heron(double a)
{
double x = (a + 1) / 2;
while (1) {
if (x * x == a){
break;
} else {
x = 0.5 * (x + a / x);
}
}
return x;
}
``````

chux-恢复莫妮卡

`x * x``x * x != a`容易出现溢出。`x != a/x`提供了没有该范围问题的类似测试。如果发生溢出，`x`可能会被“无限”或“非数字”“感染”，而无法实现收敛。

``````#include <assert.h>
#include <math.h>
#include <stdlib.h>
#include <stdio.h>

double rand_finite_double(void) {
union {
double d;
unsigned char uc[sizeof(double)];
} u;
do {
for (unsigned i = 0; i < sizeof u.uc; i++) {
u.uc[i] = (unsigned char) rand();
}
} while (!isfinite(u.d));
return u.d;
}

double sqrt_heron(double a) {
double x = (a + 1) / 2;
double x_previous = -1.0;
for (int i = 0; i < 1000; i++) {
double quotient = a / x;
if (x == quotient || x == x_previous) {
if (x == quotient) {
return x;
}
return ((x + x_previous) / 2);
}
x_previous = x;
x = 0.5 * (x + quotient);
}
// As this code is (should) never be reached, the `for(i)`
// loop "safety" net code is not needed.
assert(0);
}

double test_heron(double xx) {
double x0 = sqrt(xx);
double x1 = sqrt_heron(xx);
if (x0 != x1) {
double delta = fabs(x1 - x0);
double err = delta / x0;
static double emax = 0.0;
if (err > emax) {
emax = err;
printf("    %-24.17e %-24.17e %-24.17e %-24.17e\n", xx, x0, x1, err);
fflush(stdout);
}
}
return 0;
}

int main(void) {
for (int i = 0; i < 100000000; i++) {
test_heron(fabs(rand_finite_double()));
}
return 0;
}
``````

• `sqrt_heron(0.0)` 作品。

• 更改代码以获得更好的初始猜测。

``````double sqrt_heron(double a) {
if (a > 0.0 && a <= DBL_MAX) {
// Better initial guess - halve the exponent of `a`
// Could possible use bit inspection if `double` format known.
int expo;
double significand = frexp(a, &expo);
double x = ldexp(significand, expo / 2);

double x_previous = -1.0;
for (int i = 0; i < 8; i++) {  // Notice limit moved from 1000 down to < 10
double quotient = a / x;
if (x == quotient) {
return x;
}
if (x == x_previous) {
return (0.5 * (x + x_previous));
}
x_previous = x;
x = 0.5 * (x + quotient);
}
assert(0);
}
if (a >= 0.0) return a;
assert(0);  // invalid argument.
}
``````

0 条评论